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Abstract: The availability of genomic data for an increasing number of species makes it possible to incorporate
evolutionary processes into conservation plans. Recent studies show how genetic data can inform spatial conser-
vation prioritization (SCP), but they focus on metrics of diversity and distinctness derived primarily from neutral
genetic data sets. Identifying adaptive genetic markers can provide important information regarding the capacity
for populations to adapt to environmental change. Yet, the effect of including metrics based on adaptive genomic
data into SCP in comparison to more widely used neutral genetic metrics has not been explored. We used existing
genomic data on a commercially exploited species, the giant California sea cucumber (Parastichopus californi-
cus), to perform SCP for the coastal region of British Columbia (BC), Canada. Using a RAD-seq data set for 717
P. californicus individuals across 24 sampling locations, we identified putatively adaptive (i.e., candidate) single
nucleotide polymorphisms (SNPs) based on genotype–environment associations with seafloor temperature. We
calculated various metrics for both neutral and candidate SNPs and compared SCP outcomes with independent
metrics and combinations of metrics. Priority areas varied depending on whether neutral or candidate SNPs were
used and on the specific metric used. For example, targeting sites with a high frequency of warm-temperature-
associated alleles to support persistence under future warming prioritized areas in the southern coastal region.
In contrast, targeting sites with high expected heterozygosity at candidate loci to support persistence under
future environmental uncertainty prioritized areas in the north. When combining metrics, all scenarios gener-
ated intermediate solutions, protecting sites that span latitudinal and thermal gradients. Our results demonstrate
that distinguishing between neutral and adaptive markers can affect conservation solutions and emphasize the
importance of defining objectives when choosing among various genomic metrics for SCP.

Keywords: adaptive genetic variation, climate change, conservation genetics, marine protected area, spatial
conservation prioritization

Incorporación de Datos Genómicos Putativamente Neutros y Adaptativos dentro de la Planeación de la Conser-
vación Marina

Resumen: La disponibilidad de los datos genómicos para un número creciente de especies posibilita la in-
corporación de los procesos evolutivos dentro de los planes de conservación. Los estudios recientes muestran
cómo los datos genéticos pueden informar a la priorización de la conservación espacial (PCE) pero tienden a
enfocarse más en las medidas de la diversidad y la distinción derivadas principalmente de los conjuntos de datos
genéticos neutrales. La identificación de los marcadores genéticos adaptativos puede proporcionar información
importante con respecto a la capacidad de las poblaciones para adaptarse al cambio ambiental. Aun así, no se ha
explorado el efecto de la inclusión de las medidas basadas en los datos genéticos adaptativos dentro de la PCE y
cómo se comparan con las medidas genéticas neutrales de uso más amplio. Usamos datos genómicos existentes
sobre una especie de explotación comercial, el pepino de mar gigante de California (Parastichopus californicus),
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para realizar la PCE para la región costera de la Columbia Británica (BC) en Canadá. Usamos un conjunto de
datos RAD-seq para 717 individuos de la especie P. californicus en 24 localidades de muestreo para identificar
los polimorfismos de un solo nucleótido (PSNs) putativamente adaptativos (es decir, candidatos) con base en las
asociaciones genotipo-ambiente manifestadas con la temperatura del fondo marino. Calculamos varias medidas
para los PSNs neutrales y los PSNs candidatos y comparamos los resultados de la PCE con medidas independientes
y con combinaciones de medidas. Las áreas prioritarias variaron dependiendo de si se usaron los SNP neutrales o
los candidatos y de la medida específica que se utilizó. Por ejemplo, enfocarse en sitios con una frecuencia alta de
alelos asociados con agua cálida para fortalecer la persistencia frente al futuro calentamiento prioriza las áreas en la
región del sur de la costa. Al contrario, enfocarse en sitios con una alta heterocigosidad esperada en los loci de los
candidatos para fortalecer la persistencia frente a la incertidumbre ambiental prioriza las áreas en la parte norte de
la costa. Cuando combinamos las medidas, todos los escenarios generaron soluciones intermedias, protegiendo
así los sitios que abarcan gradientes latitudinales y gradientes térmicos. Nuestros resultados demuestran que la
distinción entre los marcadores neutrales y los adaptativos puede afectar las soluciones de conservación y también
enfatizan la importancia de la definición de los objetivos cuando se elige entre varias medidas genómicas para la
PCE.

Palabras Clave: área marina protegida, cambio climático, genética de la conservación, priorización de la con-
servación espacial, variación genética adaptativa

Introduction

Marine protected areas (MPAs) are effective conserva-
tion tools because they restrict human activity in their
boundaries (Edgar et al. 2014) and can improve popula-
tion resilience to climate change (Roberts et al. 2017).
Nonetheless, designing effective MPAs remains a
formidable challenge. A systematic approach to MPA
planning can help achieve conservation objectives by in-
corporating targets for the protection of key biodiversity
features and costs associated with conservation actions
into an integrated spatial prioritization framework (Mar-
gules & Pressey 2000). Spatial conservation prioritization
(SCP) thus offers a quantitative approach to select cost-
effective priority sites for inclusion in protected areas
(Moilanen et al. 2009) and has been applied to delineate
optimal MPAs for various objectives, including fisheries
management, preservation of marine biodiversity, and
mitigation of climate change threats (Wilson et al. 2020).

Genetic information can be used to ensure that evo-
lutionary patterns are also represented in conservation
planning (Funk et al. 2012; von der Heyden 2017; Xuereb
et al. 2019). Specific advances in marine spatial plan-
ning include developing frameworks to incorporate ge-
netic diversity and distinctness in SCP (Beger et al. 2014)
and shifting from single-species to multispecies conser-
vation targets (Nielsen et al. 2017; Paz-Vinas et al. 2018).
However, to date, SCP studies have focused primarily on
metrics derived from neutral genetic markers. Neutral ge-
netic data are valuable for considering demographic his-
tory and genetic connectivity in conservation decision-
making, but they do not capture patterns of selection.
The potential for adaptive genomic markers to represent
such patterns of selection and inform conservation ac-
tions has been proposed (Funk et al. 2012; von der Hey-
den 2017; Flanagan et al. 2018), but adaptive markers
are rarely explicitly integrated into SCP (but see Hanson

et al. [2017]). Protecting adaptive genetic variation can
have large effects on future adaptation and long-term per-
sistence of marine populations experiencing (or that are
predicted to experience) unfavorable conditions due to
climate change and other stressors (Bay & Palumbi 2014;
von der Heyden 2017).

Metrics used in SCP to represent conservation fea-
tures and the approach for selecting priority areas
require careful consideration. Genetic metrics may be
calculated as indices of within-population attributes and
between-population relationships, both of which may be
important for conservation (Beger et al. [2014] lists ge-
netic attributes and associated metrics). Nielsen et al.
(2017) used 4 genetic metrics to identify priority areas
for 5 intertidal species based on genetic diversity, genetic
uniqueness, and genetic distinctness. From a conserva-
tion perspective, populations with high genetic diversity
may be important sources of standing genetic variation,
whereas populations with high genetic uniqueness or
distinctness may indicate isolation and thus may be de-
prioritized for protection (Beger et al. 2014). However,
genetically unique or distinct populations may alterna-
tively indicate adaptive divergence and therefore could
be important for conservation (Beger et al. 2014; Bay &
Palumbi 2014). By assessing divergence with both neu-
tral and candidate adaptive genomic markers, it may be
possible to distinguish between these contrasting inter-
pretations of observed patterns (e.g., by determining
whether limited connectivity or selection are the under-
lying processes).

Incorporating genomic data into SCP is not trivial.
Our objective was to evaluate how SCP solutions may
differ depending on the manner in which genomic data
are treated and to develop a framework for considering
the spatial distribution of genomic variation in marine
conservation planning. We considered how genomic
data are summarized using different metrics, the type of
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underlying genomic data (putatively neutral or adaptive),
and the effect of integrating multiple genomic metrics,
all of which are key decisions for SCP. We used the
California sea cucumber (Parastichopus californicus) in
coastal British Columbia (BC), Canada, as a case study.
P. californicus is harvested for human consumption
throughout its range along the Pacific coast of North
America. Recent seascape genomic work identified
population genetic structure and a subset of genomic
markers associated with seafloor temperature, indicating
the potential for local adaptation in P. californicus popu-
lations in BC (Xuereb et al. 2018a,b), making this a useful
system for investigating SCP outcomes with genomic
data. We considered how genomic metrics affect SCP
outcomes for neutral and candidate adaptive genomic
markers; whether solutions differ when SCP considers
only neutral genomic markers versus candidate adaptive
genomic markers; and how solutions based on integrated
scenarios, wherein genomic metrics are combined,
compare with solutions based on independent metrics.
We sought to expand on previous work incorporating
neutral genetic metrics in SCP in marine systems (Beger
et al. 2014; Nielsen et al. 2017).

Methods

Data Collection

We used genomic data from 717 P. californicus spike-clip
samples collected from 24 sites (20–34 samples/site) in
coastal BC and southwestern Alaska (Fig. 1) that were
published previously by Xuereb et al. (2018a). In total,
3699 SNPs were identified from double digest restriction-
site-associated DNA sequencing (ddRAD) data. Full de-
tails on sample collection, sequencing, filtering, SNP
identification methods, and potential advantages and lim-
itations of using RAD-seq data in outlier-detection analy-
ses are described in Xuereb et al. (2018a).

We compiled 2 data sets: candidate adaptive SNPs and
putatively neutral SNPs. The SNPs identified as adaptive
were not experimentally or functionally tested to rig-
orously demonstrate that they are under divergent se-
lection; thus, we refer to them as candidate genomic
markers or candidate SNPs. Such markers are consid-
ered valuable for conservation because they are highly
divergent and strongly linked with environmental fac-
tors and therefore are likely affected by unique evolu-
tionary forces (Allendorf et al. 2010). Candidate SNPs
were identified using a genotype–environment associa-
tion analysis (Xuereb et al. 2018b). Specifically, we used
a redundancy analysis (RDA) to identify covarying sets
of SNPs associated with environmental variables (details
in Xuereb et al. [2018b]). This analysis detected 59 can-
didate SNPs associated with bioclimatic variables, 51
of which were associated with mean bottom tempera-
ture, which varies latitudinally from ∼11°C in the south-

Figure 1. The 24 P. californicus sampling locations for
which neutral and candidate genomic metrics (see
Table 1) were calculated and mean bottom
temperature for the region (Tyberghein et al. 2012).

ern portion of our study area to ∼6.5°C in the north
(Fig. 1). We used the 51 temperature-associated candi-
date SNPs to calculate the adaptive genomic metrics. The
remaining 3648 noncandidate SNPs were deemed puta-
tively neutral and used to calculate the neutral genomic
metrics.

To ensure that our SCP results were not biased by de-
tection methods for candidate markers, we also consid-
ered candidate SNPs that exhibited the strongest corre-
lations (r > 0.65) with mean bottom temperature (16
SNPs); SNPs identified by both RDA and BayeScan (Foll &
Gaggiotti 2008) (43 SNPs); SNPs identified by either RDA
or BayeScan (71 SNPs); and SNPs identified by BayeScan
alone (55 SNPs).

Neutral Genomic Metrics

Metrics computed using neutral genomic markers sum-
marize patterns of genetic variation generated by selec-
tively neutral processes and pertain to demographic con-
siderations in conservation planning. With neutral SNPs,
we calculated expected heterozygosity (Hneut) and local
genetic differentiation (local FSTneut) as metrics of genetic
diversity and distinctness, respectively (Table 1). We cal-
culated within-site Hneut for each sampling location and
pairwise FST with Genodive (Meirmans & Van Tienderen
2004). Local FSTneut was calculated for each site as the
average of pairwise FST values between it and all other
sites (Foll & Gaggiotti 2006).

Conservation Biology
Volume 35, No. 3, 2021



912 Genomic Data

Table 1. Summary of genetic metrics used in systematic conservation prioritization.

Conservation feature Metric Definition Marker type Reference

Genetic diversity expected heterozygosity (He) probability of sampling 2 different
alleles within a site

neutral, adaptive Nei 1973

Genetic distinctness/
uniqueness

local differentiation (FST) degree to which genetic
composition at a given site
differs from the mean
composition of all sites

neutral, adaptive Foll & Gaggiotti
2006

population adaptive index
(PAI)

measure of adaptive allele∗

frequency differences between
a given site and mean
frequencies across the study
area

adaptive Bonin et al.
2009

Predicted
adaptedness

adaptive score (Sadapt) proportion of adaptive alleles∗

averaged across individuals
within a given site

adaptive Manel et al.
2018

∗For PAI and Sadapt, the adaptive allele in this study refers to the allele that is positively associated with mean bottom temperature across all
candidate markers for P. californicus.

Adaptive Genomic Metrics

Because patterns of variation at neutral loci may not
reflect patterns at adaptive loci (Hoffmann & Daborn
2007), metrics of genetic variation at candidate mark-
ers may be better proxies for evolutionary potential (von
der Heyden 2017). We calculated heterozygosity and lo-
cal FST with the 51 candidate SNPs as metrics of adap-
tive genetic diversity and distinctness (Hadapt and FSTadapt,
respectively) (Table 1). We computed two additional
metrics based on the assumption that alleles positively as-
sociated with bottom temperature are considered adap-
tive because ocean temperature in the region is pre-
dicted to increase (Foreman et al. 2014). The first is
the population adaptive index (PAI), which reflects the
uniqueness of adaptive genomic diversity in one site
compared with all other sites (Bonin et al. 2009; Table 1).
The PAI was calculated for each site as the sum of the
per-locus absolute difference between the adaptive allele
frequency (within site) and the mean frequency of the
adaptive allele across all sites. The second metric, adap-
tive score (Sadapt) (Manel et al. 2018) was calculated for
each individual as the proportion of alleles positively as-
sociated with mean bottom temperature divided by 2C,
where C is the number of candidate SNPs. In our case,
individuals with high adaptive scores are expected to
have higher fitness under warmer conditions and popu-
lations containing a high proportion of these individuals
are thus considered to exhibit high potential for local
adaptation under a scenario of increasing temperature,
which we refer to as predicted “adaptedness.” To obtain
a within-site value, we estimated the mean adaptive score
over all individuals within a site. Correlations among
metrics were tested using Pearson’s product–moment
correlation tests.

Spatial Conservation Prioritization

Following D’Aloia et al. (2017), we divided the BC Con-
tinental Shelf into 20 × 20 km planning units (PUs)

(n = 463). We assumed the entire coastal region is habi-
tat for P. californicus. We interpolated values of each
metric from the 24 sampling locations across all PUs with
an inverse distance-weighting approach carried out with
the phylin 1.1.1 package (Tarroso et al. 2015) in R (R
Core Team 2018). Although we used all sampling loca-
tions for interpolation, we considered only PUs in BC for
SCP to restrict the planning exercise to Canada’s Exclu-
sive Economic Zone.

We prioritized PUs with the SCP algorithm in the R
package prioritizr 4.0.2 (Hanson et al. 2018). The ap-
proach used by prioritizr is based on integer linear pro-
graming with exact algorithms to find the optimal set of
PUs in relation to a specified objective to protect conser-
vation features. Conservation features were the metrics
measuring genomic diversity, distinctness or uniqueness,
or predicted adaptedness (Table 1) in each PU. We used
the minimum set objective (Beger et al. 2014; Nielsen
et al. 2017), which aims to identify the smallest set of
PUs needed to achieve a given representation target for
each conservation feature. We set the feature represen-
tation target to protect ∼30% of the total number of
PUs, which is consistent with the predicted amount of
coastline that should be protected to sustain populations
(Botsford et al. 2001). To evaluate conservation solutions
based solely on genomic marker type (putatively neutral
or candidate) and alternative genomic metrics, we held
the cost of protecting a PU across the region constant
(cost per PU = 1).

We performed additional analyses by varying the PU
size (40 × 40 km) and the area-based conservation target
(15% and 50%) to ensure that overall SCP solutions were
not sensitive to these parameter choices. Finally, we ex-
plored the effect of using smaller subsets of neutral mark-
ers on spatial planning outcomes by randomly sampling
51 putatively neutral SNPs out of 3648 and performing
SCP on the subset with the neutral genomics metrics.
We repeated this process 1000 times and evaluated the
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selection frequency of each PU across the 1000 resam-
pled neutral data sets.

We included a series of scenarios to explore how ge-
nomic data types (putatively neutral or candidate SNPs)
and genomic metrics influence SCP outcomes. First, we
ran independent scenarios to generate solutions based
on each genomic metric separately. Second, we ran
combined scenarios to explore how joint consideration
of certain metrics shape the optimal solution. We in-
cluded 6 combinations: neutral diversity and distinctness
(Hneut and FSTneut); adaptive diversity and distinctness
(Hadapt and FSTadapt); neutral and adaptive genomic diver-
sity (Hneut and Hadapt); neutral and adaptive genomic dis-
tinctness (FSTneut and FSTadapt); adaptive genomic diversity
and predicted adaptedness to future warming (Hadapt and
Sadapt); and predicted adaptedness and adaptive unique-
ness (Sadapt and PAI). The first and second scenarios al-
low comparison of solutions based on neutral genomic
markers only or adaptive genomic markers only and can
indicate whether neutral markers may be used as surro-
gates of adaptive genetic variation. The third and fourth
scenarios were used to compare the choice of metric
when integration of information from both neutral and
adaptive genomic markers was desirable. We combined
Hadapt and Sadapt (fifth scenario) because these metrics re-
flect distinct evolutionary processes that may be impor-
tant for population-level responses to future environmen-
tal change. For example, Hadapt may be best for variable
environmental conditions, whereas Sadapt may be best if
temperature continues to increase. Finally, we combined
Sadapt and PAI (sixth scenario) to preserve sites that har-
bor unique warm-temperature-associated alleles and sites
that show a high degree of predicted “adaptedness” un-
der warming conditions. Genomic metric values were
scaled between 0 and 1 to ensure all metrics were consid-
ered equally in the combined scenarios. For all prioritiza-
tion scenarios, we used the Gurobi optimization solver
(Gurobi Optimization and LLC 2018), as implemented in
prioritizr. To compare solutions, we calculated the Jac-
card coefficient between each pair of solutions; values
close to 1 indicated high similarity in the PUs selected
between solutions and values close to 0 indicated low
similarity.

Results

Spatial Genetic Patterns

Across the sampled sites, the range of Hneut was small
(0.111–0.117), and on average pairwise FSTneut was low
(mean = 0.004) (Table 2). With candidate SNPs, Hadapt

spanned a wider range (0.072–0.180) than Hneut, and
there was a significant difference in variance between
Hneut and Hadapt (Levene’s test, F1,46 = 298.7, p <

0.0001). Pairwise FSTadapt was also significantly higher

Table 2. Mean and range of variation of the 6 neutral and adaptive ge-
nomic metrics over the 24 sites sampled for P. californicus∗.

Genomic metric Acronym Mean

Range of
variation

(min–max)

Heterozygosity (neutral) Hneut 0.114 0.111–0.117
Local FST (neutral) FSTneut 0.0037 0.0028–0.0071
Heterozygosity (adaptive) Hadapt 0.126 0.072–0.180
Local FST (adaptive) FSTadapt 0.074 0.059–0.097
Population adaptive index PAI 3.75 3.05–4.89
Adaptive score Sadapt 0.563 0.486–0.640

∗Adaptive metrics are based on candidate markers.

than FSTneut (mean = 0.074; Wilcoxon signed rank test,
Z = −20.362, p < 0.0001) (Table 2). The adaptive score
was high (mean = 0.56) (Table 2), meaning that for most
sites, over half the 2∗51 alleles carried by an individual
at the 51 candidate SNPs were positively associated with
warm temperatures and are thus expected to be advanta-
geous under future warming conditions. The difference
in allele frequency of warm-temperature-associated alle-
les between a given site and the mean frequency across
sites ranged from 0.019 to 0.26, resulting in site-level PAI
values between 3.05 and 4.89 (Table 2).

Spatial interpolation showed minimal spatial variation
in Hneut as a consequence of low variation across sam-
pled sites (Appendix S1). Genetic differentiation at puta-
tively neutral SNPs was elevated in northwestern BC and
low elsewhere. At candidate SNPs, Hadapt showed a lati-
tudinal gradient, with values increasing northwardly, but
FSTadapt showed no clear latitudinal patterns. The adap-
tive score showed an inverse pattern to Hadapt (Appendix
S1), which may reflect geographic variation in selective
processes maintaining higher levels of polymorphism at
candidate loci in the north than in the south. Finally,
PAI showed a similar pattern to FSTadapt (Appendix S1).
Pearson’s correlation tests confirmed the positive asso-
ciation between FSTadapt and PAI (r = 0.89, p < 0.001)
and the negative association between Hadapt and Sadapt

(r = −0.96, p < 0.001); all other correlations were
nonsignificant.

Alternative Genomic Metrics in SCP

Comparing across neutral genomic metrics, SCP solu-
tions differed depending on whether Hneut or FSTneut

was prioritized (Fig. 2a, b). Solutions for the 2 scenarios
had low similarity (Jaccard index = 0.35) (Table 3). The
solution based on Hneut selected priority areas in the cen-
tral coast, whereas this region was excluded by the SCP
scenario based on FSTneut.

Focusing on adaptive genomic metrics with candi-
date SNPs also showed that the summarizing metric af-
fected the prioritization solution. The priority area based
on Hadapt was primarily in the north (Fig. 2c), priority
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Figure 2. Alternative best
solutions from prioritizr
showing the selected
planning units (filled grid
cells) for different,
individual genomic metrics
based on neutral or
candidate genomic markers
from P. californicus (PAI,
population adaptive index;
PU, planning unit).

areas based on FSTadapt were in the northern and central
regions (Fig. 2d), and priority areas based on Sadapt were
in the south, where there was a higher frequency of
warm-temperature-associated alleles (Fig. 2e). Accord-
ingly, solutions based on Hadapt and Sadapt independently
shared no overlapping PUs (Table 3). The 2 most similar
solutions (Jaccard index = 0.52) were based on metrics
of adaptive distinctness (FSTadapt and PAI). These SCP re-

sults were consistent across different subsets of candi-
date SNPs (Appendices S2 and S3).

Similar SCP solutions were obtained when we in-
creased PU size (40 × 40 km) (Appendix S4). Vary-
ing the conservation targets also resulted in similar
spatial outcomes with fewer (15%) or more (50%) se-
lected PUs across the coastline (Appendices S5 and
S6). In general, similarity between scenarios increased
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Table 3. Jaccard coefficient of similarity between each pair of spatial con-
servation prioritization solutions based on single neutral or adaptive ge-
nomic metrics.

FSTneut Hadapt FSTadapt Sadapt PAI

Hneut 0.350 0.211 0.216 0.274 0.429
FSTneut 0.243 0.160 0.274 0.319
Hadapt 0.318 0 0.403
FSTadapt 0.042 0.519
Sadapt 0.152

as protection targets increased, except in 2 compar-
isons (Hneut vs. Sadapt and Hadapt vs. PAI) in which some
nonoverlapping PUs were selected with a larger protec-
tion target and the Jaccard similarity decreased slightly
(Appendix S7).

Comparing Neutral and Candidate Markers in SCP

The SCP outcomes based on independent metrics dif-
fered between putatively neutral and candidate SNPs.
With Hneut, groups of PUs throughout the region were se-
lected, whereas the solution based on Hadapt selected PUs
concentrated in the north (Fig. 2a, c). Jaccard similarity
between these 2 solutions was low (Table 3). Likewise,
outcomes based on FSTneut and FSTadapt exhibited low sim-
ilarity. With FSTneut much of the southern region was se-
lected, whereas FSTadapt prioritized areas concentrated in
the central and northern regions.

The selection frequency of PUs across the 1000 sub-
sets of 51 randomly selected neutral SNPs was high for
PUs selected based on the full neutral data set, whereas
PUs selected with the 51 candidate SNPs were rarely se-
lected across the neutral subsets (Appendix S8) for both
heterozygosity and local FST. A solution based on the top
30% of the most frequently selected PUs across resam-
pled data sets was also similar to the solution obtained
using the full neutral data set (Appendix S8). The me-
dian Jaccard similarity index comparing the solution with
51 candidate SNPs with all solutions based on resampled
neutral data sets was low for both Hneut and FSTneut (0.17
and 0.13, respectively). These results imply the differ-
ences between neutral and candidate SNP data sets are
not likely due to a difference in the number of markers
used.

Combining Genetic Metrics

Combining Hneut and FSTneut resulted in the selection of
PUs across the entire planning area (Fig. 3a), similar to
the solution with Hneut alone (Appendix S9). However,
fewer PUs in the central coast and southernmost regions
were selected relative to the solution based only on Hneut.
With a combination of Hadapt and FSTadapt, the solution
was similar to that based only on FSTadapt (Appendix S9)
and primarily selected sites in the northern and central

regions (Fig. 3b). Neither Hadapt nor FSTadapt selected PUs
in the southern portion of the planning area when used
alone.

When Hneut and Hadapt were combined, PUs across
the entire planning area were selected (Fig. 3c). This
spatial pattern resembled that of Hneut alone; however,
more PUs were selected in the north when both met-
rics were incorporated such that the combined solution
was equally similar to both independent scenarios (Ap-
pendix S9). Combining FSTneut and FSTadapt resulted in an
intermediate solution. While priority areas in the central
coast were largely excluded in the solution based only
on FSTneut, and only three PUs were selected in the south
with FSTadapt alone, combining both metrics selected a
large priority area in the central coast and more PUs in
the south (Fig. 3d).

Combining Hadapt with Sadapt, which independently led
to opposing solutions, also favored an intermediate solu-
tion; priority areas were focused in the north, south, and
central coasts (Fig. 3e). Priority areas were also spread
along the coast when PAI and Sadapt were combined
(Fig. 3f). This solution was similar to that based on PAI
alone but included a large area on the southwestern coast
of Vancouver Island, reflecting the large priority area in
this region when only Sadapt was considered.

Discussion

Although the value of genomic data for conservation
planning has been discussed widely (Funk et al. 2012;
von der Heyden 2017; Flanagan et al. 2018), the ac-
tual uptake has been stymied by a lack of clear guide-
lines for implementation (Shafer et al. 2015). For marine
conservation, several studies have made important con-
tributions by illustrating how neutral genetic data can
be incorporated into SCP for single (Beger et al. 2014)
and multispecies (Nielsen et al. 2017) objectives. Adap-
tive genomic markers provide complementary informa-
tion regarding evolutionary resilience (von der Heyden
2017). By incorporating them into SCP, it may be possi-
ble to disentangle demographic and selective processes
driving divergence. We used genomic metrics computed
on putatively neutral and candidate markers identified
from P. californicus to compare SCP solutions. Optimal
priority areas varied depending on the genomic metric,
type of genomic marker, and whether genomic metrics
were used individually or jointly. Spatial patterns of ge-
netic variation at neutral and adaptive loci were gener-
ated by different underlying evolutionary processes (e.g.,
limited connectivity or selection driving population di-
vergence), which was reflected in the dissimilar SCP so-
lutions obtained when using either neutral SNPs or can-
didate SNPs from P. californicus (Fig. 2). Our results have
implications for decision-making regarding the treatment
of genomic data in SCP and highlight the importance of
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Figure 3. Alternative best
solutions from prioritizr
showing the selected
planning units (filled grid
cells) for different
combinations of genomic
metrics based on neutral or
candidate genomic markers
from P. californicus (PAI,
population adaptive index;
PU, planning unit).

carefully choosing suitable metrics to ensure they align
with conservation objectives.

Choosing Genomic Metrics to Match Conservation Objectives

We found that the specific metric had a strong effect on
SCP outcomes. Notably, most solutions based on a single
genomic metric had very little overlap with each other
(Table 3). These results support earlier findings based on

neutral genetic data (Beger et al. 2014), which emphasize
that the manner in which genetic data are summarized
can drastically alter SCP solutions and underscore the
importance of choosing metrics that adequately reflect
the target genetic or genomic feature (e.g., distinctness
or uniqueness, diversity, predicted “adaptedness”).

One approach to conservation in rapidly changing
environments is to prioritize populations predicted to
persist under future conditions (Wilson et al. 2020). If
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environmental change can be forecasted with confi-
dence, then populations that have already experienced
directional selective pressures may be adapted to future
conditions. The adaptive score Sadapt is one useful metric
to assign value of the potential for local adaptation in re-
lation to well-identified selective pressures (Manel et al.
2018). For P. californicus, Sadapt was highest in PUs host-
ing the highest frequencies of warm-associated alleles in
the southern region, and the SCP algorithm identified
these PUs as priority areas when Sadapt was prioritized.
In many cases, environmental conditions and the degree
to which they will change at local versus regional scales
cannot be forecasted precisely (Payne et al. 2016; Steen
et al. 2017). Although there are strong ongoing trends,
such as warming (Cheng et al. 2019), this level of un-
certainty puts forth the question of whether a strategy
aimed at “picking the winners” (Webster et al. 2017) (i.e.,
prioritizing sites with high Sadapt) is appropriate. In this
case, an approach may be to “let nature choose the win-
ners” (Webster et al. 2017) by prioritizing sites with the
highest degree of adaptive genetic diversity (i.e., those
with high Hadapt), thus preserving evolutionary potential
for an uncertain future (Hoffmann et al. 2017). For P. cal-
ifornicus in BC, prioritizing Hadapt led to a completely
nonoverlapping solution when compared with the solu-
tion based on Sadapt, where only northern PUs were pri-
oritized with Hadapt. These conflicting solutions reflected
the spatial patterns in Hadapt and Sadapt, which could be at-
tributed to regional variation in selective processes (Véliz
et al. 2004). Divergent selection may generate reduced
genomic diversity in the south, while balancing selec-
tion, perhaps associated with higher temporal variance
in thermal conditions, may contribute to maintaining a
higher degree of polymorphism in the north (Bernatchez
2016).

Another approach for SCP with genomic metrics is to
consider the distinctness or uniqueness of alleles present
across protected areas (Souto et al. 2014; Nielsen et al.
2017), which can be achieved using metrics such as PAI
or local FST. This is related to the objective of representa-
tiveness in SCP, whereby PUs are selected for protection
such that the full variety of biodiversity is represented
across selected reserve sites (Margules & Pressey 2000).
Using metrics based on distinctness, either neutral or
adaptive, should lead to a set of PUs with high diversity
across the planning area by selecting dissimilar sites, thus
preserving a wider variety of genetic diversity across pro-
tected areas, but will not necessarily prioritize individual
PUs that contain the highest levels of within-PU genetic
diversity. This is indeed the principle behind the develop-
ment of the PAI, whereby populations are not considered
for protection based on their individual levels of intrinsic
diversity, but rather on their unique contribution to over-
all diversity relative to each other (Bonin et al. 2009). As
such, it is important to clarify whether the conservation
goal is to protect specific sites with the highest levels of

adaptive genetic diversity (i.e., heterozygosity) or to pre-
serve a portfolio of sites that harbor different genomic
variants (e.g., PAI or FST). This difference is analogous
to species-based conservation objectives related to pro-
tecting sites containing the highest levels of within-site
species richness or prioritizing sites with high endemic-
ity such that unique species are conserved across all pro-
tected sites.

Combining Multiple Genomic Metrics in SCP

Combining genomic metrics within a single SCP scenario
may be a useful way to protect multiple evolutionary pro-
cesses. For example, combining Hadapt and Sadapt, which
independently led to opposing solutions, selected some
PUs that contained a high frequency of alleles associated
with warm temperatures, which are likely to be benefi-
cial under future warming, and selected other PUs that
harbor high levels of polymorphism. This combination
also yielded a more spatially representative solution than
either independent metric, which is likely to be favorable
for preserving genetic diversity across the whole coast
for P. californicus, especially when connectivity is some-
what restricted between the north and south (Xuereb
et al. 2018a).

The SCP solutions differed substantially when we used
either candidate adaptive markers or putatively neutral
markers (Fig. 2). This implies that neutral genomic mark-
ers are not effective surrogates for adaptive genetic vari-
ation in this system and that candidate adaptive genomic
markers provide different information compared with
putatively neutral markers. In particular, although neutral
genetic markers provide information on demographic
history, population structure and connectivity, adaptive
markers inform on local adaptation to environmental
conditions and the type of selection (e.g., divergent vs.
balancing) at play. Combining metrics based on puta-
tively neutral and adaptive genomic markers may thus be
a useful strategy for capturing spatial patterns of popu-
lation genetic variation generated by different processes,
such as demographically independent and adaptively dif-
ferentiated populations, at the same time (Funk et al.
2012).

Perspectives on Using Genomic Data in SCP

Although the integration of genomic data in SCP holds
great promise, several challenges and decisions pertain-
ing to the treatment of these data arise. First, the iden-
tification of candidate adaptive loci relies on statistical
tests that are prone to errors (de Villemereuil et al. 2014)
may only capture a moment in time (Villacorta-Rath et al.
2018), and sometimes result in different sets of candi-
date loci (e.g., Dalongeville et al. 2018). For nonmodel
organisms, annotated reference genomes and transcrip-
tomes are often lacking and experimental validation may
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be unfeasible; thus, linking candidate adaptive markers
to gene functions and adaptive traits remains a challenge.
However, we found that SCP solutions were very similar
between candidate adaptive SNPs detected by two dif-
ferent methods (RDA and BayeScan), suggesting that, at
least for P. californicus, SCP is not affected by the de-
tection method of candidate loci. Future studies should
focus on the robustness of SCP solutions to errors in the
detection of candidate adaptive loci and the variability
introduced in the solutions relative to other sources of
uncertainties.

Second, in real planning efforts, solutions will ide-
ally be based on candidate genomic markers associated
with multiple environmental variables. To illustrate the
decision-making involved in using genomic data in SCP,
we focused exclusively on associations with mean bot-
tom temperature, which is a key variable for marine ec-
totherms (Bay & Palumbi 2014; Benestan et al. 2016).
However, other environmental variables, such as salin-
ity and pH, may also play important roles in driving
patterns of adaptive genetic variation in P. californicus
(e.g., Xuereb et al. 2018b) and other marine species
(Dalongeville et al. 2018; Griffiths et al. 2019). More-
over, global change is expected to lead to greater tempo-
ral fluctuations in temperature over shorter time scales
(Sommer et al. 2018). In such a case, SNPs associated
with temperature variability, in addition to average tem-
perature, should also be considered in the future. Results
of other studies suggest that environmental data could
be used as a surrogate for adaptive genomic data (Han-
son et al. 2017). Additional studies in this region should
explore the extent to which SCP solutions based on en-
vironmental data capture adaptive genomic patterns. Fi-
nally, although we focused on environmental sources of
selection pressures in this study, other factors, includ-
ing fishing pressures, may also influence adaptation (Fen-
berg & Roy 2008). Research into the potential adaptive
consequences of fishing-induced evolution in P. califor-
nicus populations is thus warranted.

Third, SCP is usually performed in a multispecies mul-
tiobjective framework with a suite of physical, biologi-
cal, and socioeconomic variables. While recent studies
have evaluated the use of neutral genetic metrics for
multispecies SCP objectives (Nielsen et al. 2017; Paz-
Vinas et al. 2018), future work should also focus on un-
derstanding how adaptive variation may vary between
species (e.g., Stanley et al. 2018) and thus could influ-
ence SCP outcomes. It will be important to consider
how these genomic-based features should be weighed
in light of multiple objectives and in conjunction with
other variables including abundance or biomass, catch
rates for harvested species, and other costs associated
with individual PUs. The inshore waters of BC support a
variety of economic activities (fishing, aquaculture, ma-
rine tourism, transportation, and mining) and the gov-
ernments of Canada, British Columbia, and First Nations

have taken action to create a network of MPAs through
systematic conservation planning (MPA Network 2020).
Given the ongoing SCP work in coastal BC, as genomic
data become available for diverse taxa, they will add an
important element to the prioritization process. While
the specific metrics used to summarize genomic data will
ultimately depend on the conservation objectives, evalu-
ating spatial patterns of putatively neutral and adaptive
genomic variation provides valuable information regard-
ing different ecological and evolutionary processes that
can be incorporated directly into conservation planning
to promote long-term biodiversity persistence.
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